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Algorithms are considered for monitoring and control of thermal processes in specialized
instrumentation,

Variable temperature regimes in an object containing multielement heat liberation and heat sink
structures of various construction may be monitored by the indications of a series of temperature sensors.
Analysis of the object’'s temperature regime allows accurate determination of temperature values, whose
range might have been known beforehand only approximately.

With high technical requirements as to temperature drops needed to satisfy normal operating condi-
tions, an organized control over the information proceeding from the temperature sensors makes it pos~
gible to prevent the development of malfunctions, Regulation must be accomplished on a real time scale,
and decision-makingand delay periods in the regulation process must not exceed the minimum interval
for development of malfunctions. Thus, the first stage of data processing should include decoding of the
incoming information, printout in graphic form, analysis and processing of control effects on auxiliary
system temperature regulators (if such are included in the object), or making decisions on switch~on or
switch-off of the heat-generating devices,

The following stages of the data processing are connected with analysis of instrument function and
deviations occurring in the thermal processes and prediction of temperature regimes.

The temperature regime of complex objects may be described with sufficiently high accuracy by a
system of thermal balance equations which are a particular case of the thermal-conductivity equations,
The mumber of equations in the system corresponds to the number of segments into which the system is
divided. Each segment is characterized by the condition that the temperatures of elements included there~
in may be taken as equal at any moment., The division process is governed by peculiarities of element
funection and structure, technical temperature-maintenance requirements, the character of thermosensor
devices used, et¢. The thermal-balance equation for any segment is written in the following form:
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It develops in prachce that in the case of a complex object it is impossible to experimentally deter-
mine the coefficients of the thermophysical characteristics of the segments and the external thermal flux
values appearing in the equation. Studies performed with test stands and temperature chambers do not
allow complete modeling of the character of real thermal processes occurring in the object's functioning,
Thus, some solution to this problem must be determined. It proves to be the case that it is possible to
use temperature sensor indications to determine actual values of the thermophysical characteristics and
the incidenf external heat fluxes of the segments.
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We write the thermal-balance relationship for contracting bodies or media in simplified form as
follows:

Q = WAl = WAL, (2)

Methodological computation of thermal processes can be divided into two types — thermotechnical
calculations of the first type and of the second type. In computations of the first type initial and final tem-
peratures of both bodies are known and the problem reduces to determination of heat-transfer power. In
calculations of the second type, values of thermal power Q and initial temperatures are used to determine
final body temperatures, '

In the case where we have available temperature-sensor information, the division of the body into
segments is known, and it is known beforehand which of the thermal-balance equations are undefined; it
is possible to solve the converse problem, i.e., to calculate the unknown parameters on the basis of
thermotechnical computations of the first type. In the system of thermal-balance equations temperature
curves obtained by processing of sensor indications allow the segment temperatures to be considered as
known, while the thermophysical parameter values can then be found by converse-problem methods,

One of the most reliable methods, giving good results with a small number of variable parameters,
is the method of least squares [1]. For example, if for the object studied it develops that the coefficients
entering the i-th equation are unknown, the temperature curve of that segment can be recorded at a number
of successive moments, with the condition that the number of these equations exceed the number of param-
eters studied. This system of equations is then taken as a system of conditional equations of the method
of least squares,

Fr-X=9Q. 3)

Minimization of squares of the conditional equations transforms them into a system of normal equa-
tions:

' T - X=I9, “)
where I'" - T" = B is & square matrix of dimensions n X n, and
X=B1t.I".Q (5)

Actual calculation of a number of objects has revealed that variation of more than three parameters
gives unreliable results independent of the number of conditional equations {2]. The problem lies in the
fact that the absolute value of the determinant of the inverse matrix B~! proves to be very large, and thus
insignificant errors in 2 or I'" produce significant distortions in the value X. In order to reduce error in
2 and T'' to 2 minimum, it is also necessary that the thermosensor information be received without noise.

Depending on the character of the connecting circuitry and the conditions under which the object func-
tions, in many cases it is impossible to avoid the appearance of random noise in the sensor indications,
There exist several methods for smoothing discrete information and eliminating noise, The most conven-
ient and most simply explained is smoothing by expansion in a Fourier series, Comparison of this method
with others revealed no special advantages, :

This method represents the random noise 6—function as a divergent Fourier series, and so the co-
efficients of this Fourier expansion of the noise are all of the same value, Simple reception of discrete
information characterizing a smooth function can be identified with an odd function whose Fourier coeffi-
cients bp decrease as 1/n®, Sucha function can be written as a Fourier series in sines:

2n

g(x):blsin£x+bzsin X4+ (8)
a

The coefficients bk are determined from the condition that at the moment of arrival of information from

the thermal sensors the function g(x) must correspond to that information.

The Fourier coefficients of the temperature function must decay as 1/n3 and, after some value bm
can be taken equal to zero. On the other hand, the coefficients of the 6-function Fourier series remain
unchanged in value. Consequently, after a number m the coefficients of the expansion of the function con-
structed from the thermal-sensor information will be practically constant. It is obvious that they may be
discérded. "A major complexity of this method is the search for a boundary frequency. Good results in
thermal-sensor information processing were given by the following algorithm:
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Use of the information-smoothing method aids in determining reliable values of the thermophysical param-
eters. Converse-problem methods are especially convenient in cases where during use of the apparatus
thermodynamic parameters of its component parts change (basically due to chemical reactions and inci-
dence of foreign objects) and combustion and contamination (due to oxidation and formation of scale) of the
contacting surfaces occur.

After the values of the unknown thermophysical parameters are established, the thermal regimes of
complex objects can then be predicted by thermotechnical computations of the second type.

These procedures for thermal-sensor data processing permit monitoring of an object's thermal
regime, determination of thermophysical parameters of its elements, and analysis of factors concerned
with the surrounding medium in the functioning of serial objects.

NOTATION

Tj, temperature of i-th segment; Tj, temperature of j-th segment, with which the i-th segment is
in thermal contact; r, time; cj, specific heat of i~th segment; Gj, weight; Uigyts Lijnt: external and in-
ternal thermal fluxes; Ajj, coefficient of thermal conductivity of joint between i-th and j-th segments;
lijsjoint length; Fy;, thermal interaction area between segments i and j. C;, Stefan—Boltzmann equation
constant; €gop;, corrected mutual radiation coefficient; ejj, coefficient of heat transfer between i-th
segment and liquid; M, N, P, number of segments with which i-th segment is in one or another form of
thermal contact; Q = kH®, quantity of heat transferred from cooling body to warming body; Wy = cpGy;
W, = cpyG,, water eyuivalents; ® = t;—t,; Aty, Aty, temperature changes in first and second bodies; I,
n by m matrix, m > n; X, column of unknown parameters; 2, column of free terms; I'', transposed
matrix I', a, time interval for data accumulation from i-th sensor; h, interval between successive data
transmissions, x =0, h, 2h ...nh =a.
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